HUNTING FOR PLANETS WITH THE McDONALD OBSERVATORY 2.7m TELESCOPE

ASTRONOMY PROGRAM

Summary of Talk

- Introduction and Background
- Radial Velocity planet search
- Transit/Eclipse planet search
 - Kepler follow-up
- Latest exciting news

Introduction

Long suspected that "extrasolar" planets exist
 "This space we declare to be infinite... In it are an infinity of worlds of the same kind as our own."
 -Giordano Bruno (1584)

- When a star forms, leftover material (gas & dust) remains in a disk
- Planets condense out of the disk and grow by collecting disk material

Background

- So, we "know" they're out there...
- How do we find them?

Stars are a billion

times brighter...

...than the planet

...hidden in the glare.

Background

 It is currently very difficult to directly photograph exoplanets

Instead, astronomers look at stars for indirect evidence of planets orbiting them

Indirect Planet Detection Methods

- Most common: (more on these later)
 - Radial velocity: 516 planets
 - Done here at McDonald
 - Transiting: 308 planets
 - Follow-up done here
- More rare
 - Gravitational Microlensing: 21 planets
 - Astrometric: 1 planet

• Three key parts of process:

- Spectrum of starlight reveals dark absorption lines
- Stars "wobble" as planets orbit them (astrometric)
- This wobble produces a "Doppler Effect"
 - Star moves towards us \rightarrow light appears bluer
 - Star moves away from us \rightarrow light appears redder
- Put it all together: as planet orbits, the absorption lines change position over time

The spectrum of a star reveals dark lines, called absorption lines.

lines

visible spectrum of light

Radial VelocityMethod

- Newton's Third Law: action-reaction
 - Star pulls on planet
 - Planet pulls on star
- Less massive planet has greater acceleration (wide orbit)
- More massive star has less acceleration (small orbit)

Orbital Motion

- Brightness drops when planet passes in front
 Need "lucky"
 - geometry to see a transit, so watch many stars

Time

• Kepler NASA spacecraft

- Kepler searches for transits of planets across the face of their parent stars
- Specifically designed to look for potentially habitable Earth-size planets
- Stares continuously at a couple hundred thousand stars
- Continuously monitors them for telltale dip in brightness (for ~4 years)

RV and Kepler Candidates

Planet Candidates

Planet Candidates

As of February 27, 2012

NASA

- Kepler Follow-Up Program: Going from candidates to real planets
 - Ground-based (including McD 2.7m and HET telescopes)
 - Characterize stars
 - Light curve gives ratio of star to planet radii
 - Need to know the star's size to get the planet's size
 - Used to rule out "false positives"
 Binomy store A wild radial valuation of the second store A wild radial valuation of the second
 - Binary stars \rightarrow wild radial velocity changes

Common False Positives

Exciting New Result #1

Ianets are everywhere!

- Over 4,000 planet candidates from Kepler
- Average star has between 1 and 2 planets, based on current detection limits
- Smaller planets are more common
 - likely makes the above estimate a lower limit

Planet Fractions (from candidates)

Exciting New Result #2

- Small planets in the "habitable zone"
 - Habitable zone: region around star where liquid water could exist
 - Not too hot (close to star)
 - Not too cold (far from star)
 - Kepler-62: five planet system
 - With two Earth-size (roughly) planets, in the habitable zone!
 - Smallest habitable zone planets yet discovered
 - Members of our team helped in discovery, using 2.7m telescope

Most "Habitable" Planets

Current Potentially Habitable Exoplanets

Kepler-62 e

Gliese 581 g*

Gliese 667C c

Tau Ceti e*

Earth

Mars

HD 40307 g*

Gliese 581 d

Exciting New Result #3

• "Tatooine Planets"

- Planets orbiting a pair of stars (binary stars)
- Planet formation around binary stars previously considered unfeasible
- Now known to be much more common than originally thought!

Exciting New Result #4

- Planets next door!
 - Alpha Centauri: closest star system to the Sun (4 light-years away)
 - Earth-mass planet around Alpha Cen B (discovered in late 2012)

Conclusions

- Kepler has shown us that small planets like the Earth are everywhere!
- Many such planets are likely habitable
- As demonstrated by Alpha Cen Bb, such planets exist nearby
- Long-term: study planets themselves (composition)